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The goal of this paper is to construct discretizations for the equations of Lagrangian
gas dynamics that preserve plane, cylindrical, and spherical symmetry in the solution
of the original differential equations. The new method uses a curvilinear grid that
is reconstructed from a given logically rectangular distribution of nodes. The sides
of the cells of the reconstructed grid can be segments of straight lines or arcs of
local circles. Our procedure is exact for straight lines and circles; that is, it repro-
duces rectangular and polar grids exactly. We use the method of support operators
to construct a conservative finite-difference method that we demonstrate will pre-
serve spatial symmetries for certain choices of the initial grid. We also introduce a
“curvilinear” version of artificial edge viscosity that also preserves symmetry. We
present numerical examples to demonstrate our theoretical considerations and the
robustness of the new method.

Key Wordscurvilinear grids; grid reconstruction; invariant discretizations; preser-
vation of symmetry.

1. INTRODUCTION

The purpose of this paper is to demonstrate the feasibility of preserving certain phy
symmetries in numerical simulations of fluid flow by using higher-order reconstructi
of the computational grid. In a typical two-dimensional Lagrangian calculation, the nc
move each cycle with the local fluid velocity, and then the mesh is reconstructed by
necting neighboring nodes with straight lines. Our strategy here will be to use higher-c
curves to connect the nodes, so that planar, cylindrical, and spherical symmetries w
exactly maintained, while the simulation of other symmetries will be enhanced. W
demonstrating feasibility, we recognize that our particular algorithm is derived heur
cally, and that further research may lead to significant improvements. Nevertheles:
believe that the utility of more general grids is in itself worth illustrating.
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390 MARGOLIN AND SHASHKOV

The importance of preserving physical symmetries in Lagrangian simulation is w
recognized. For example, the preservation of spherical symmetry in numerical simulati
of implosion is critically important in the inertial confinement fusion (ICF) program [12
39, 37]. There small departures from spherical symmetry due to discrete errors may
amplified by Rayleigh—Taylor instability [1, 13, 14], leading to unacceptably large errc
in problems with strong compressions. Also, uncertainty as to whether a nonsymme
result is due to numerical errors or to the physical design inhibits our understanding of
dynamics of the implosion and so severely limits our predictive capabilities.

Previous work has concentrated on the form of the difference approximations rat
than on the grid. In fact, both the choice of the discrete operators and the method of
reconstruction can lead to the loss of symmetry in calculations. Once a grid has been chc
it is necessary to construct approximations to spatial operators like divergence, grad
and curl. We shall show that the method of support operators provides a general frame\
for constructing these operators, once the grid is determined. Furthermore the metha
support operators leads to conservative finite-difference methods.

Reviewing previous work, we can distinguish between those methods that preserve s
metry exactly and those that improve the preservation of symmetry. The straightforw
approach to preserving symmetry exactly on a polar grid is to use spherical coordin:
as the primary coordinates and the corresponding components of velocity field in the
crete model [34, 37]. This approach is expensive because it is requires the computatic
trigonometric functions. Moreover, because these methods use the equations of gas dy
ics in spherical coordinates, special care has to be taken in discretizing terms contai
1/R, which appear due to the dependence of the basis vectors on position. Also the us
spherical coordinates is not accurate for systems evolving far from sphericity.

In practice, the most widely used methods that preserve symmetry exactly on polar g
with equiangular zoning are the “area-weighted” methods [2, 38, 35]. In this approa
one uses a Cartesian form of the momentum equation in a cylindrical coordinate syst
The term “area-weighted” originates when this approach is used in the framework of fini
element methods, where integration is not performed with respect to the true volume
cylindrical coordinates, but rather with respect to area. A drawback of this approach is 1
it works only for the equiangular grid. In practice, one finds large errors when the angL
zoning is not uniform, especially near the symmetry axes. For a general discussion, see
In this reference, a generalization termed the modified gradient method [3] is describe
which the forces are modified locally according to the expected symmetry of the flow.

An alternate strategy does not seek to preserve symmetry exactly, but rather to imp!
the representation of symmetry over more standard methods. One such strategy is te
the “mass matrix” approach [25—-27]. A standard technique in finite volume algorithms is
calculate the acceleration as the surface integral of the pressure gradient over a “mome
control” volume. The acceleration so calculated should be applied to the center of r
of this volume, which usually does not coincide with the node point. In the “mass matri
approach, one distinguishes between the center of mass and the node point and atte
to compensate for the difference. This can be accomplished explicitly, by correcting
acceleration of the node using the accelerations at some neighboring nodes, or implic
by introducing the mass matrix and solving a system of linear equations.

Another approach to improve symmetry is based on using a nonconservative forn
the governing equations [33]. There it is shown that a nonconservative form can yiel
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considerable improvement in symmetry when compared with methods based on a co
vative form.

Stillanother approach to constructing Eulerian methods [24, 23] with improved symm
on uniform grids is based on analyzing the group symmetry properties of the modi
equations [40]. There are also theoretical papers such as [10], where group propertie
investigated in more detalil.

All the methods described above use traditional grids, in which the nodes are conne
by segments of straight lines. One obvious disadvantage of using such grids is the
domains with curvilinear boundaries, additional errors are introduced that are relate
the approximation of the boundary. For example, in problems with spherical symmetry
domain of the original differential equations is a sphere, but the computational domal
a polygon. Also, for such an approximation of the boundary it is not clear how to spe«
the boundary conditions; from the statement of the original problem we know bou
ary conditions only on the curvilinear boundary but not on the boundary of the polyg
In the context of the equations of Lagrangian gas dynamics, the same uncertainty af
to interfaces between different materials. For methods that use a staggered data stri
there is also a problem in specifying the initial conditions because thermodynamic q
tities, like pressure, are assigned to the entire “cell” and one has to specify these va
The simplest choice, which is used in practice, is to compute the value at the “geom
center” of the cell. However, for general polar grids, the radii of these cell centers are
equal.

Thereis atleast one (to our knowledge) approach to solve the equations of gas dynarr
mixed Eulerian—Lagrangian form, where a method of the Godunov type is used on mo
curvilinear grids [15, 32]. This algorithm preserves some spatial symmetries exactly,
does not appear applicable to finite difference codes.

It is well known from the finite-element method (FEM) literature [8, 16, 41, 42] th.
introducing curvilinear grids for domains with curvilinear boundaries increases the accu
of simulation. The improvement in accuracy results from the simple fact that one
approximate a given boundary more accurately using high-order splines than with segn
of straight lines. In this paper we employ curvilinear grids throughout the domain ¢
construct our difference approximations consistently to achieve a different goal, namel
preservation of the physical symmetry of the solution.

The paperis organized as follows. In Section 2 we describe an algorithm for reconstru
the curvilinear grid and then give examples of reconstructed grids. In Section 3 we de
a notation for various elements of the curvilinear grid, and also describe the space
grid functions. In Section 4 we derive discrete analogs of the divergence and grac
operators on the curvilinear grid and prove their symmetry properties. In Section 5
use these operators to construct a finite difference algorithm for Lagrangian gas dyna
In Section 6 we define the notion of spatial symmetries for the discrete model and p
that our algorithms preserve these symmetries. In Section 7 we further prove tha
corresponding algorithm, implemented on the grid with straight lines, does not pres
spherical symmetry. In Section 8 we present numerical examples, which verify our ana
and illustrate the robustness of the algorithm.

To make this paper self-contained, in Appendices A and B we provide the neces
formulas for lengths, areas, and volumes, and describe an edge atrtificial viscosity fo
curvilinear grid that preserves symmetry.
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2. GRID RECONSTRUCTION

We consider a logically rectangular distribution of points in two spatial dimension
representing the nodes of a grid, such that the points can be labeled by two indice$,
(asin the case of a rectangular grid). For each riédehe coordinates arg ;, yi ;. When
the grid points with fixed (j) are connected by segments of straight lines, the grid cel
are general quadrilaterals. The broken line connecting the points can be thought of a
simplest approximation to some smooth curve that goes through these points.

It is clear that there is no unique way to draw a curve going through these points. In 1
section we describe an algorithm for the reconstruction of the curve that is exact when
points lie on a straight line or on the circumference of a circle. By exact, we mean tl
if the pointsi =const(j =cons} lie on a straight line or circle, then our method will
reconstructthisline or circle. Our algorithmis local, by which we mean that the reconstruc
curve between two points is based only on the coordinates of those two points and a
neighboring points.

A further restriction of our algorithm is that we reconstruct the curves independently 1
each family—that is, when we reconstruct the curve corresponding toifiedwve use
only information from neighboring points with the same fixed). More particularly, to
reconstruct the curve between two points, we use information only from these points,
the two nearest neighbors in the family. This algorithm is similar to one described in [1F

Our construction is based on a well-known property of central and inscribed angles |
circle. Let us consider four poin®®_1, P, P, P..» that lie on the same circle; the index
increases as we move clockwise along the circle, see Fig. 1a. We denote the center ¢
circle by O. We also denote the angld® P, _1 P ;1 by «, the angle/ P .1 P, > P, by 8, and
the central anglé P, O R, by y. It is known from elementary geometry that all inscribed
angles based on the same arc are equal to each other and equal to one-half of the ¢
angle based on the same arc; thatvis; 8 =y /2, and thereforegy =« + 8.

Now let us consider an arbitrary set of four poirs, 1, P, P11, P2. We will use the
coordinates of these points to reconstruct the curve between the Baifts 1 as a piece of

v€o+p

FIG. 1. (a) lllustration of the relation of the central and inscribed angles of a circle, (b) reconstruction of t
local circle.
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o>0,$<0,y>0

FIG. 2. Different cases of the reconstruction of the local circle.

a circle. This circle has to pass through these two points, which gives us two condition:s
define a unique circle we specify the central anglén the case of an arbitrarily positioned
set of four points, we compute the angées /P, P,_; P, andg = /P, P ,P 1, and then
define

1% % + B.

For the anglex, we consider the direction from segment 1P, ; to segment?_; P as
the positive direction. Therefore the anglavill vary from —x to . A similar convention
is adopted for the anglg, where the positive direction is froms ,P to P,>P, 1. The
situation where both angleg,andg are positive is shown in Fig. 1b. Finally, we define the
curve between pointB;, P, ; as the arc of the circle that goes through these points and |
the central angler. This procedure is illustrated in Fig. 1b. We note that the anglasd

B can become negative when the orientation of the points is changed. This means th:
angley also can be negative or zero. Thais negative indicates a different orientation of
arc P, P,; with respect to the local polar coordinate system (see Fig. 2).

In Fig. 2 we show several different possible situations: (a) the situation whesgland
y > 0; (b) the situation where adl, 8, andy < 0; (c) the situation where all >0, 8 <0,
but|«| > |B], thatis,y > 0.

Wheny = 0 we reconstruct the curve between poiRt& ;1 as a segment of a straight
line. As a matter of implementation, we connect two points by a straight line whene
ly| <107*2, It is clear that this algorithm will be exact whenever the four points lie on
straight line, or on the circumference of a circle.

We illustrate our algorithm by presenting examples of grid reconstruction for three Ic
cally rectangular distributions of nodes. First, in Fig. 3a we present the usual grid, where
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04 08 as 1

FIG. 3. Smooth logically rectangular distribution of nodéd,= N =5. (a) Comparison of the usual grid
(nodes connected by segments of straight lines) and the piecewise smooth reconstruction (nodes connec
arcs of the circles). (b) Polar distribution of nodes. Grid nonuniform in angle and in radius. (c) Random logice
rectangular distribution of nodes.

nodes are connected by segments of straight lines, superimposed on our new reconstrt
using piecewise circles, for points {1, y) €[0 : 1] x [0 : 1], obtained by mapping

X(&,n) =& +0.1%sin(27&) * sin(2wn), Y, n) =n+ 0.1xsin(27&) x sin(2rn),

from a uniform grid(M = N =5) in the unit square ¢, n) € [0 : 1] x [0 : 1]. Second, in
Fig. 3b we present the grids for a polar distribution of nodes—i.e., the coordinates of
nodes are

Xi,j = Rj sing, Viii = Rj cosb;,

where the anglé equals O at thg axis and increases as the angle rotates toward #xés.
In this case the grid consists of perfect circles and straight lines, whether or not the ang
zones have equal width.

Finally we consider a nonsmooth logically rectangular grid distribution. This distributic
is obtained from a uniform grid by random displacement of each point from its origin
position within the limits of a small square whose center is the original position of the poi
The resulting grids are shown in Fig. 3c.

To construct our discretizations, we will need to compute the lengths, areas, and volu
for the new curvilinear grid. We distinguish between two different cases. In the first ca
we consider 2-D figures in the — y plane. For these figures we need formulas for the
lengths of the curved sides of a cell and for the areas of the enclosed quadrilateral. Tl
quantities will be used in the case of 2-D finite-difference schemes in Cartesian geome
In the second case we consider 3-D figures, which are obtained by the revolution of
2-D figures around an axis of symmetry. Here we think ofithey axes as the — z axes
of a cylindrical coordinate system. Such figures are used in the calculation of proble
with cylindrical symmetry. For these figures we need the formulas for the areas of surfa
obtained by revolution of the curved sides (i.e., the faces of the 3-D cell) and for the volu
of the 3-D figure of revolution. In this case all quantities are normalizeetorde lengths
of the edges, the areas of the faces, and the volumes of the cells all can be computed ex
In Appendix A we provide the necessary formulas.

For simplicity, throughout this paper we will refer to the geometric elements ir thg
case as if they belong to— z case.
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3. ELEMENTS OF THE CURVILINEAR GRID

In this section we describe our notation for the elements of the curvilinear grid that
have constructed in the previous section. We will also introduce some additional geome
objects.

The nodes of the grid are denoted by the pair of indige$). The midpoints of the
sides—i.e., the points that divide the edges into two pieces with equal lengths—are der
by one integer index and one half-integer indéx+ 1/2, j) or (i, j + 1/2). For the sides
themselves, we use the same indices as the midpoints. The midpoint divides the sids
two subsides. These subsides have superscripts that coincide with the index of the
sponding side and subscripts that indicate which vertex is an endpoint. For example
area corresponding to the subside of the side connecting riadgsand (i, j +1) and
having nod(i, j) as an endpoint is denoted 8" **/2. We could write§'} **/? instead

2 (]
of S&"J 712 but we prefer the latter notation because it is then clearer to which side

refer. IJ\Iotations for the other areas are shown in Fig. 4.

Next, we introduce the “median” grid. The edges of the median grid pass through
midpoints of the edges of the primary grid, and are constructed in exactly the same mant
i.e., they can be arcs of circles or segments of straight lines, see Fig. 4. The intersecti
the edges of the median grid within a cell defines a point in the cell, which we call the “
center,” denoted by the indicgis+ 1/2, j + 1/2). Also these two edges subdivide the cel
into four subcells. To designate these subcells, we again use both superscripts and subs
The superscripts correspond to the index of the cell, while the subscripts correspond t
index of the point that is a vertex of the original grid, which is also a vertex of the subc
The volume enclosed by the four subcells surrounding a node is sometimes terme
“momentum control volume.”

For each side we can define two unit normal vectors; these are the normals to the cir
the nodes (i.e., the endpoints of the arc). Note that when the side is a segment of a st
line, the normal vectors are parallel. The designation for these normals is the same &
subsides, Fig. 4. Note that there will be four unit normal vectors at each node, Fig. 5.

o 2]

i+l

_Eij-'-}fz
ij+l
Tla'+ 12 f+1

(ij+1) i+12,j+1

i+dj+1

oo il

i+l i+l

kY
12412 %
Vu.” , i+ 12+ 102

+1j+1
1 j+12

i+1/2.f (i+ 1:.”

==
12,4102 i nn
= I i+l
%) 5
A il
i

S.n i+12, SN

'S i+12,f

i+12j

i+lj

FIG. 4. Notations for the areas of faces and volumes.
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FIG. 5. Notation related to the momentum control volume.

4. DISCRETE OPERATORS ON CURVILINEAR GRIDS

In this section we construct the discrete analogs of the differential opedaaadgrad
on the curvilinear grid. These will be used to construct the finite difference algorithm f
the equations of Lagrangian gas dynamics.

We assume a data structure that is the standard for staggered grid. Here thermodyn
variables such as pressupgwhich are scalar grid functions, are defined at the cell center
We denote the space of such discrete scalar functiokbGsBoth components of vector
fields, such as velocitﬁ, are defined at the nodes of the original grid. We denote the spa
of such discrete vector functions &8V

We define the discrete analog of the operdaligrin a coordinate invariant form

div W = lim M

Jim. v (4.1)

We choose the computational cell of the original grid as the volume of integratiorhen
the domain and range of our discrete divergencebdye : HA” — HC.

We represent the boundary integral in (4.1) as the sum of boundary integrals over
individual faces and then subdivide each arc into two subarcs. The boundary integral «
each subarc is approximated by the value of the dot pro(di!cﬁ), evaluated at the cor-
responding vertex of the original grid, and then multiplied by the area of the subarc. T
resulting formula is

(DIV V_V)i+1/2,j+1/2

= {[((Wiga g ng 32 S0 (Wi, nE D) 12 S5 )
— (Wi}, n%::rl/z) S‘é“ii,’jHl/er (Wi a1, n%::}ﬁ/z) Sfii,’jjill/z)]
+ [((Wi,j+la m?:ji/lz’jﬂ) S’I:j‘i/lz'jH*‘ (Wi+1,j+17 ndn:ﬁ/JerJfl) S":ii/irjfl)
- ((Wi,j, nﬂﬂ:fjl/z’j ) Sfliijl/z’j + (Wi+1,j’ Tfﬂ:ﬁ/sz)Sn:ﬁ/jzlﬂ }/Viryzji2. (4.2)
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To construct the discrete analog grfad we use the support operator method (SOM
[30, 29, 31]. In this methodology the discrete gradi&RAD, is derived from the given
discrete divergenc®IV , by enforcing a discrete analog of the integral identity

/¢divVVdV+/(VV, grad¢)dV=7§ o(W, 1) dS (4.3)
V \% EAY

which relatediv andgrad, whereg andW are an arbitrary scalar and a vector functior
respectively.

We can without loss of generality neglect the boundary term in (4.3) and write a disc
analog of this integral identity as

Z 0 41/2,i+12(DIV Wi 112 j 4172V 412, +1/2 + Z(VV, GRAD ¢); jVi,j; =0, (4.4)

cells nodes
whereV, ; is a volume associated with the node.

Vi,j :Viijrl/Z,j+1/2+Vl 1/2]+l/2+vl 1/2,j— 1/2+VI+1/21 1/2 (45)

To derive the operatdBRAD we consider (4.4) as an identity with respecWo Then
by regrouping terms, we find that

2]~ i41/2.
(GRAD ¢)i.j = {(@i+1/2.+1/2 — Pi+1/2.j— 1/2)377|+ / Jnnl+ /2]

2]~ i-1/2.
+ (@i—1/2,j+1/2 — Gi—1/2,j— 1/2)577| ,/ J”UI /2]
12 1/2
+ (Qit1/2,j+1/2 — Pi—1/2, J+1/2)S§| Y §| S
120,12
+ (@it1/2,j-1/2 — Gi-1/2,j- 1/2)3§| Y IJ / YV (4.6)

This expression has an interpretation in terms of the usual coordinate invariant defin
of grad

$,, 9N dS

gradg = \l/iTo : v 4.7)

Consider the “momentum control volume” associated with a node that is defined by piec
the midcircles as shown in Fig. 5. Let us now consider the piece of the boundary integra
isassociated withcefi +1/2, j+1/2),i.e.,withthe curve§ +1/2, j) — (i+1/2, j +1/2)
and(i +1/2,j +1/2) — (i, j + 1/2). If we assumep is constant within a cell, equal to
vi+1/2,j+1/2 (as would be true for discrete pressure), then

/ pn dS+ / pndS
(+1/2,))—(+1/2.]+1/2) (+1/2.]+1/2— (0. j+1/2)

= (pi+1/2,j+1/2</ ﬁdS-I—/ ﬁdS). (4.8)
(i+1/2,))—(+1/2,j+1/2) (i+1/2,j+1/2)— (i, +1/2)

Now the integralf i d Sover any closed contour is zero; therefore in Cartesian coordina
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we can write

(/ ndsS+ / nd S)
(+1/2,)—(+1/2,j+1/2) (+1/2,j+1/2—(i,j+1/2)

=_</ ﬁdS+/ ﬁds>. (4.9)
(.j+1/2)—(,j) (i,)—=>1+1/2,))

If we approximate each of the integrals in the right-hand side of this equation by taking
normal in the corresponding vertex of the original grid multiplied by the area of the subsi
we obtain the expression (4.6) fGRAD.

The last step breaks the conservation of momentum in the discrete model. For a ger
discussion relating to preservation of symmetry leading to the loss of conservation
momentum see [3].

5. THE FINITE DIFFERENCE SCHEME

The equations of Lagrangian gas dynamics can be written

dp

=" div U, (5.1)
du

,oa = —grad p (5.2)
de R

pa = —pdivU, (5.3)

wherep is the density,p is the pressures is the specific internal energy, atdl is the
velocity.

In this section we describe the discretization of these equations on the new curvilin
grid, using the discrete operators derived in the previous section. We consider the case
staggered mesh, where the velocity vector is defined on the nodes of the original grid,
all other variables are defined at the “centers” of the cells.

In Lagrangian gas dynamics the nodes move with the local fluid velocity, and the mas
a cellis assumed to be constant in time. We will also assume that the masses of the sut
are constant in time [4]; this implies that the masses of the nodes (i.e., the masses o
figures shown in Fig. (5)) are also constant in time. The mass of a subcell is

i+1/2,j+1/2 i+1/2,j+1/2
mi,j/ I+ = pi+y2.j+1/2Vi /212, (5.4)

The mass of a cell and the mass of a node are given by

Miy1/2,j+1/2 = Pi+1/2,j+1/2Vit1/2,j+1/2, (5.5)

i+1/2,j+1/2 i—1/2,j+1/2 i—1/2,j-1/2 i+1/2,j-1/2
myj = m Y22 | 17205 1/2j-1/ 1/2.j-1/2. (5.6)

+m +mi; + M

The role of the continuity equation in Lagrangian gas dynamics is played by the diagno
equation

Mit1/2j+1/2
Pi+1/2j+1/2 = —RI2 (5.7)

Vi+1/2,j+1/2
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which relates the density in the cell to the volume. The volume in turn is a known funct
of the coordinates of the nodes.
The discretizations of the momentum and energy equations are
gnr+l_gn.
i, i,
mi,jg = —Vi_j(GRAD p)i,j (58)
At
n+1 n
€i11/2,j+1/2 ~ €iv1/2,j+1/2
At

Mi+1/2,j+1/2

U’n+1+U’n

= —Piy2j+1/2Vity2 12 (DlV > , (5.9)

> i+1/2,j+1/2

where the discrete operatd®BRAD andDIV have been defined in the previous section.
It is convenient to write these equations in a form similar to the differential case,

gnl_gn
i, i,
pij—+——+L = —(GRAD p); (5.10)
At
1 - -
&2 112 — €M1z 12 DIV untt 4+ un
Pi+1/2,j+1/2 At = —Pi+1/2,j+1/2 Y )
i+1/2,j+1/2
(5.112)
where the nodal densify ; is
m i+1/2,j+1/2 i—1/2,j+1/2

fij = Tj = {pit12 j+1/2Vi + pic12,j+172V

-1/2, 1/2,j—-1/2 i+1/2,j+1/2
+pi—1/2.j- 1/2VI (212 4 oo 1/2V+/ - YR

i—1/2,j+1/2 i-1/2,j-1/2 |+1/21 1/2}

+Vi; + Vi + Vi,
To simulate high-speed flows with shocks, we need to introduce artificial viscosity
Appendix B, we describe the modifications to an edge viscosity introduced in [5] on

new curvilinear grid.

6. PROOF OF SYMMETRY PRESERVATION

6.1. Statement of Symmetry

We will consider the finite difference algorithm in cylindrical coordinateg, ¢), when
there is no dependence ¢n Plane, cylindrical, and spherical symmetries can all be co
sidered in this framework. We will prove the symmetry for the finite difference algorith
neglecting the viscous terms. The viscous terms can be analyzed in a similar way.

A statement of the initial and boundary conditions for problems with plane symmetry i
follows. We consider a rectangular domairrjiz coordinates(O<r <rma0 X (Zmn<2z=<
Zmax); When rotated about the axis of symmetry, the domain becomes a cylinder in 3-D.
component of velocityl = U, is always equal to zero at=0 and is set equal to zero at
I =lmax At Z= Zmin andz = zyWe specify either the pressure or the normal component
velocity,v = U,, which do not depend anbut may depend on time. The initial distributions
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of the physical parameters are chosen to depend onkyamaU, = 0. For such initial and
boundary conditions, the solution of the equations of gas dynamics will depend oaly o
at any later time.

A statement of the initial and boundary conditions for problems with cylindrical symmet
is as follows. We consider the same computational domain as for plane symmetry. -
component of velocity = U, must still equal zero at= 0; however, at =,y We specify
eitheru=U;, or the pressure, which may depend on time but does not depeadAin
Z= Zmin andz = zy5x the normal component of velocity,=U,, is set to zero. The initial
distributions of the physical parameters are chosen to depend omlyasdU, =0. For
such initial and boundary conditions, the solution of the equations of gas dynamics \
depend only om at any later time.

Finally, a statement of the initial and boundary conditions for problems with spheric
symmetry is as follows. We consider a domain that is one quarter of a circle m-ttee
plane. Then the boundaries of this domain are the straightdiaddandr = 0 and the circle
r2+z?= R2_; after revolution about the axis of symmetry, the domain is a hemisphere
3-D. Atr =0 the normal component of velocity must be zares U, =0, and similarly
atz=0, we setv =U,=0. On the circular boundary we can specify either the pressur
which must depend only on the spherical radiBsz +/r 2+ 22, or we can specify the
normal (spherical) component of the velocity. In either case, the specified function n
vary in time; however, at any particular time, the specified function must be constant on
circular boundary. The initial distribution of the physical parameters are chosen to dep
only on R. For such initial and boundary conditions, the solution of the equations of g
dynamics will depend only oR at any later time.

In the discrete case, any spatial symmetry can be preserved exactly only on special t
of grids. For problems with plane or cylindrical symmetry, the special grid is rectangul
where the node®, ; have the coordinate§;, z;), Fig. 6a. For problems with spherical
symmetry the special grid is polar, where the noBeshave the coordinates

fi,j = Rj sin@i, Zj= Rj cost;,

and the angl® equals 0 at the axis and increases from tlzeaxis to ther axis where it
equalsr /2. The polar grid is presented in Fig. 6b.

a b

N

(i)
J (i)

R P
i J

FIG. 6. (a) Grid for plane and cylindrical symmetry, (b) grid for spherical symmetry.
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The statement of the initial and boundary conditions for a discrete problem with pl
symmetry is as follows. We consider the grid that is shown in Fig. 6a. The range of indice
1<i <M, 1<j < N.Theboundary conditions farareu; ; =0, u',QM =0. Onthetop and
bottom boundaries, we can specify the pressg’i‘gl,/zl = Poottom(t™), p{‘H/ZN = Pop(t™),
orwe can specify the normal component of the velooﬁy,z Vbottom(t"), vy = viop(t"™). We
further specify that the initial distribution of physical parameters does not depenaneh
that the radial component of velocity, is zero everywhere. That i,fssi?H/ijH/2 = pJQH/Z,
P1j2 112 = PYaay2r E041/2 112 =€) 41/20 U =, v, = 0. Iffor these initial and bound-
ary conditions all the physical fields depend only joat all later times, then we say that
the finite difference scheme preserves plane symmetry.

The statement of the initial and boundary conditions for a discrete problem with cy
drical symmetry is as follows. We again consider the grid that is shown in Fig. 6a.
boundary conditions for the axial component of veloeigrev;’; =0, vy = 0. On the left
boundary we set] ; =0. On the right boundary, we can either specify the pressu
p’h‘,,,Hl/2 = Prignt(t™), or we can specifyl by u',Q,l’j = vrignt(t"). We further specify that the
initial distribution of physical parameters does not depend and that the velocity com-
ponentv is zero. That iSPio+1/2,j+1/2 = Pi0+1/2’ pio+1/2.j+1/2 = pi0+1/2’ 8i0+1/2,j+1/2 = 5i0+1/2»

v?; =v°j, u?; =0. Iffor these initial and boundary conditions all the physical fields depe
only oni at all later times, then we say that the finite difference scheme preserves cylind
symmetry.

Lastly, the statement of the initial and boundary conditions for a discrete problem v
spherical symmetry is as follows. We consider the grid that is shown in Fig. 6b. T
range of the indices is4i <M, 1< j <N. The boundary condition fan on ther axis
is uf ; =0. The boundary condition far on thez axis isvy ; =0. At the origin of co-
ordinates, we saif ; =v7; =0. On the circular boundary we can either specify the pre
sure,p, 2 n = Pop(t"), or we can specify the normal component of veloaify, siné; +
'y cost =UR(t"), whereUr(t") is a given function. We also specify that the initial distri-
butions of density, pressure, and internal energy do not dependibat isipio+1/2,j+1/2 =
091 1/20 Piaj2 12 = P 11/20 €241/2 112 = €%41/2- The initial distribution of velocities is
spherical; that isui‘fj = (UR)‘]-’ sing, andvﬁj = (UR)? coss;. If for these initial and bound-
ary conditions, the density, internal energy, and pressure depend onlgrahthe velocity
is spherical—that isuﬂj = (UR)? siné, andvﬂj = (UR)? cosy; at all later times—then we
say that the finite difference scheme preserves spherical symmetry.

6.2. Areas and Volumes on Rectangular and Polar Grids

The discrete operators and viscous forces are formulated in terms of the areas of the
and the volumes of the cells. To prove that our finite difference scheme preserves p
cylindrical, and spherical symmetries, we need to evaluate these formulas for the area
volumes of the rectangular and the polar grids described in the previous section. In F
we show a cell of the rectangular grid and a cell of the polar grid.

For the rectangular grid, thg faces correspond to a fixed valuerofi.e., a constant
indexi) and theSy faces correspond to a fixed valueofi.e., a constant index). The
expressions for the areas of the left and bottom faces in Fig. 7a are

Srect = r1(22 — 1), (6.1)
fr2+n

Strect = (rz —rp). (6.2)
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FIG. 7. Cells for the rectangular and polar grids.

The volume of the rectangular cell is

rz r? ro+r
Vrect = (EZ - %)(Zz —z) =2 5 Ly — 1) (22— 21). (6.3)
For the polar grid, the facest correspond to a fixed value of the anglé.e., a constant
indexi), and the faceSn correspond to a fixed value of the spherical radius (i.e., a consta
index j). The expressions for the areas of the faces and the volume of the cell are

R+ Ry .
Sé‘_polar = % Smel(RZ - Rl),
S77polar = Rf(COS@]_ — C0Sby),
v — (B _R\ o . (6.4)
polar = ?_? (CO 1 — CO 2)

_ R§+ RoR; + RJZ_

3 (Ry — Ry)(cosh; — coshy).



SYMMETRY-PRESERVING DISCRETIZATIONS 403

6.3. The Case of Plane Symmetry
6.3.1. Symmetry Preservation in the Momentum Equation

We begin by considering the momentum equation, (5.10), in the case of plane symm
We first prove that the nodal density depends only 0iWe note that the density of the cells
depends only on and therefore

s = {ppaa (VYRR SRR LR i)y

If we introduce the notation

lip1 4T Zj1+Z;

ri = , Zi = , 6.5
i+1/2 > j+1/2 > (6.5)
then the volumes contained in the expressiorpfgrare

i+1/2,j+1/2 i—1/2.j+1/2 _ Vg2 +Ticy2

Vi +Vi; f(fiﬂ/z —ri—12)(Zj412 — Zj), (6.6)
i-1/2,j-1/2 |+1/2 ji—172 _ Tigi2+ T2

Vi + Vi f(ri-ﬂ/z —ri—12)(Zj — Zj-1/2). (6.7)
liy12 +ri—12

Vij = %(fiﬂ/z —li—1/2)(Zj4+1/2 — Zj—12). (6.8)

Therefore

pii = pj = [pj+1/2(Zj+172 — Zj) + pj-1/2(Zj — Zj—1/2)]/(Zj+1/2 — Zj-1/2), (6.9)

and so the nodal densities also depend only.on
We next consider the ter@RAD p in the right-hand side of the momentum equatiol
for the “plane symmetric” pressure fielg, 12 j+1/2 = Pj+1/2. In this case,

+1/2)) = i+1/2, 1/2,j ~ i—1/2,
(Sﬂ:,/Jnn: /J+Sﬂ|,/J'7I /J)

(GRAD p)i,j = (Pj+1/2 — Pj-1/2)

Viij
Recognizing that
g 5 = = ., (6.10)
we derive
(GRAD; p)ij =0,
(GRAD, P = (Pria — By a0 'V_+.S i (6.11)
Ny

Using expression (6.8) fo¥; ; and the following formulas for the areas

So YA = (g + 1) (Tisyz — 1) (6.12)

sni‘fjl/z*i = (I +ri—12) (i —ri—12), (6.13)

Fi ri_
Sy g sl el = RO s iy, (6.14)
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we finally derive that

(GRAD, p)i.; = (GRAD, p); = M2~ Pi-12. (6.15)
Zjy1/2 — Zj-1,2

That is, the pressure gradient term in the momentum equation is plane symmetric. T
when the initial velocity is plane symmetric, the momentum equation produces a ple
symmetric velocity field on the next time step.

6.3.2. The Energy Equation

We now consider howDIV acts on a plane symmetric velocity fielﬁ,i,j = (0, vj)).

Taking into account that one component of velocity is zero, that the normals are paralle
the coordinate axis, and thay] /%) = Sy **/?, we can show that

Sn:Jrl/Z + Sniij:i./Z

(DIV Lj)i+1/2,j+1/2 = (vj41 — vj)

Vit12,j+1/2
0.5(r 41 + 1) (Mg — 1) Vjt1 — Vj
= (Vj+1 — vj) = .
0.5(r 41+ 1) Nigr —r)(Zj+1— Zj)  Zj41— Z

(6.16)

That is,(DIV U)i1/2.j+1/2= (DIV U); 412 and so the energy equation also will maintain
the plane symmetry of the internal energy.

6.4. The Case of Cylindrical Symmetry
6.4.1. The Momentum Equation

In the case of cylindrical symmetrp; 11,2 j+1/2 = Pi+1/2, and so considerations similar
to the case of plane symmetry yield the formulas

(GRAD; p)i,j =0, (6.17)
ij+1/2 ij—1/2
iy + S%‘ ;
(GRAD; p)ij = (Pis12 — Pi-12) — v - (6.18)
i
Taking into account that
S =g AT g2 o A A (6.19)
N 2 N 2
we derive
(GRAD, p)i,j =0,
ri Pit12 — Pi—12  (6.20)

(GRAD; p); ; = (GRAD; p); = .
P P 0.5 y1/2 +ri—1/2) Tigy12 —Ti—1/2

We note that this is an approximation fp/ar , because the ratig/(0.5(fi 112 + ri—1/2))
tends to unity as we refine the grid.
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6.4.2. The Energy Equation
In the case of cylindrical symmetr@,'i,,— = (u;, 0). Simple algebraic manipulation gives
1 ripaUipa —riu;

DIV U)it1/2,j41/2 = DIV U)jyyj2 = : (6.21)
livi2  Tigr —Ti

which approximates the expressiéﬁgr—w for the divergence of a cylindrically symmetric
vector(u, 0) in the continuous case.

6.5. The Case of Spherical Symmetry
6.5.1. The Momentum Equation

We now consider the polar grid. In case of spherical symme{iy, 2 j+1/2 = Pj+1/2,
and also
iy §2) = g Y%) = (sing;, cost). (6.22)
Thus we have

Sn;{rl/z,j n Sn_ifl/z,j

(GRAD; p)i.j = (Pj+1/2 — Pj-1/2)— v L sing;, (6.23)

i

Syt 4 gl =2

(GRAD; p)i.j = (Pjs1/2 — Pj-1/2)— v L cosy. (6.24)

i

If we introduce the notation
Ri+1+ R b1 + 6

Rj412 = % Oi41/2 = % (6.25)

then

2 12
S’?;j/ "+ s /2 = R?(COSHi_1/2 — COSH41/2)

R R3 (6.26)
Vij = bz _J-yz (cost) _1/2 — COSY; 11/2),
3 3
and the expressions for the component&&AD are
R? Pj+1/2 — Pj-1/2
(GRAD, p)i.j = ) o L sing;,
C T (R + RisazRis12 + RE 1) /3 05(Risa—Ri-)
(6.27)
R? Pj+1/2 — Pj-1/2
(GRAD, p)i.j = J L ) cosH;.
T (R + RiseRim2 + Ry p) /3 05(Rja— Ry~
(6.28)

Itis clear that the gradient is radial in direction and has a magnitude equal to

2
R]- ~ Pit+12 = Pj-1/2 (6.29)
(R?,1/2 + Riz12R—12+ R?_15) /3 0.5(Rj41— Rj_1)
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which does not depend @nThis expression approximates tRecomponent of the gradient
in a spherical coordinate systedp/dR; in the similar fashion to the case of cylindrical
symmetry, the factoR?/((R?,, , + Rj12Rj_12 + RZ_; ,)/3) tends to one as we refine
the grid.

6.5.2. The Energy Equation

In the case of spherical symmetry, the velocity vector has the tﬁy[rjn: (UjR sing;,
U J-R coss;), whereU R is the magnitude of the spherical velocity. Taking into account the
the velocity vector is orthogonal to thes vector at every node, and is parallel to tig
vector, we have

R i,j+1 i+1,j+1 R ihj i+1,]
®IV U, 2 isiz = UR(Snitliz e+ S’7i+1/2,j+1) —Uj (S’7i+1/2.j + S77i+1/2.,j)
i+1/2,j41/2 = -

Vit12,j+1/2
(6.30)
Using the formulas for areas and volumes, we derive
J j 1 Rz ,UR, — RRUR
(DIVU) 1/2,j 12:(DIVU) 1/2 = J J ] J’
i+1/2,j+1/ i+ (Rj2+1+ Rj+1Rj+RJ-2>/3 Rj+1 — R;
(6.31)

which approximates the divergence of a spherically symmetric vector figld R?)
B(RURY/IR).

7. VIOLATION OF SPHERICAL SYMMETRY FOR THE CONVENTIONAL SCHEME

Here we show analytically that the scheme (5.10), (5.11), which uses the grid w
straight lines, does not preserve spherical symmetry. A numerical example demonstre
this phenomenon will be presented in the next section.

For polar distributions of nodes, the grid with straight lines in shown in Fig. 3b. The fo
mulas (4.2), (4.6) for discrete divergence and gradient remain valid for this grid. Moreov
in this case the normals corresponding to one side are the same, for en&hﬂgfl/z =

nﬁ’g:ﬁ:}ﬁ/z. However, Eqg. (6.22) is not valid anymore, and instead we have

> i4+1/2,]

> i—1/2,f
nnlyj

= (SiNBi11/2,COSGi4172), N ;777 = (SiNGi_1/2, COSH _12).  (7.1)
The formulas (6.23) now take the form

1+1/2,] i-1/2,]
S % sindiy12 + Snip M sing
Vi ’

(GRAD; p)i.j = (Pj+1/2 — Pj-12) (7.2)

i+1/2,j i—-1/2,j
Snj §M%) costi /2 + Sni ;) coshi_12
Vij '

(GRAD; p)i,j = (Pj+1/2 — Pj-1/2) (7.3)

Let us consider the simplest case of a uniform-in-angle polar grid. Then after some alge
one can transform these equations to a form similar to (6.27), (6.28), where instead of s
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and co®; we will have following approximations to these quantities

5. sir? ei,l/g +2 sir? 6 + sir? 9i+l/2
sing; _1 + 6 sind; + sind; ;1
COSB;i_1/2 SiNG;_1/2 + 2 COSY; SiNG; + COSB; 11/2 SING;1/2
' sing_; + 6 sing; + sing, 1 )

(7.4)

2 (7.5)

These expressions clearly depend not only on the ahddat also on the angle%_; and
6i +1; the gradient is not in the radial direction and therefore spherical symmetry is violal

8. NUMERICAL EXAMPLES

In this section we present two examples using the curvilinear grid, both in cylindri
coordinates. The first example is Noh's spherically divergent infinite shock, for a perfect
robustness of our new method in a case where the initial grid does not reflect the symn
of the flow.

8.1. Spherical Noh Problem

Here we consider the spherical Noh problem. The problem domain starts as the
sphere. The initial state of the fluid is uniform, with a density of one and an inter
energy of zero. The initial velocity is directed radially inward with magnitude 0. The
fluid obeys an ideal gas equation of state with gas congtanb/3. Although an analytic
solution exists for the time evolution of the spherical Noh problem, here we consider ¢
the symmetry aspect. See [5] for a more detailed description of the problem solution.
begin with the case of a radial grid that is uniform in angle, shown in Fig. 8-40.6 we
show the resulting grid from two calculations: one in which we use straight lines to conr
the nodes (Fig. 8a), and the other where we use curvilinear elements to reconstruc
grid (Fig. 8b). The curvilinear grid stays spherically symmetric, confirming our theoreti
results in Subsection 6.5. The grid based on linear segments becomes highly distortec
the shock front, which eventually causes the calculation to stop.

Next we rerun the spherical Noh problem with an initial grid that is nonuniform in ang
Using the standard method based on linear grid reconstruction, this problem will not ru

.

.

0 0.05 0.1 0185 0.2 025 0.3 0.38 0.4

.

FIG. 8. A uniform-in-angle grid for Noh'’s problem; (a) conventional scheme, (b) new scheme.
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0.3 0.35 0.4

FIG. 9. A nonuniform-in-angle grid for Noh’s problem.

tot = 0.6 because of the severe grid distortion. The grid for the new method is presente
Fig. 9. Again this grid remains perfectly symmetric, as predicted by our theory.

8.2. Saltzman’s Problem

Here we present results for the well-known Saltzman piston problem. This proble
tests the ability of a code to maintain a one-dimensional solution to a one-dimensic
problem when run on a nonuniform two-dimensional mesh. The problem domain cons
of a cylinder whose lateral surface and bottom base are free-slip stationary walls, while
top is a piston moving with a constant downward velocity that drives a strong shock ir
the fluid. The analytic solution of this problem is one dimensional, depending only on t
axial coordinate, and in our terminology has plane symmetry. In the numerical simulatio
however, the one-dimensional flow symmetry is broken by the computational mesh. -
initial mesh contains 10 cells in thedirection and 100 cells in thedirection and is defined
by

ri,j = (j —Dhy, (8.1)
zj=1-(@G—-D=xh,4+ (11— jh, sinn(llaol) (8.2)
i=12...,101 ji=12,...,11 (8.3)

whereh; =h, =0.01. The grid is shown in Fig. 10.

The fluid is assumed to be an ideal gas with gas constanb/3. The piston moves
downward with a constant velocity of 1. The fluid is initially at rest, with a density o
one and with internal energy 16 The analytic post shock conditions are described by
pressure of 1.333, a density of 4, and an internal energy of 0.5; the shock speed is 1.3

Our aim in choosing this problem is to demonstrate the robustness of our new mett
It is well known that the initial nonuniform grid leads to mesh tangling, because of tl
presence of an “hourglass” mode and of artificial vorticity [11, 14]. We do not expe
the curvilinear grid to significantly improve our solution; rather we will demonstrate th:
the simulation on the new grid will not be noticeably worse.
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FIG. 10. Initial grid for Saltzman’s problem.

Because the initial grid consists of straight lines, all the initial conditions including t
distribution of masses are the same for the standard and for the new methods. Further
because the initial grid is not rectangular, the new method will not preserve the ple
symmetry. In Fig. 11 we present the grids for the standard method (a), and new metho
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FIG. 11. Grids for the Saltzman piston problem; (a) conventional scheme, (b) new scheme.
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FIG. 12. Isolines of density for the Saltzman piston problem; (a) conventional scheme, (b) new scheme.

(we present only the portions of the grid where the most severe tangling occurs). The |
for the new method looks very reasonable when compared with the standard method a
perhaps even smoother in the interior. Near the right boundary we can see cells with cle
curvilinear sides. It appears that this is an artificial phenomenon, the result of insuffici
resolution near this boundary. To show how the grid influences the density field we comg
the isolines of density for the two methods in Fig. 12. The resolution of the shock frc
is almost the same in the two calculations. The new method gives better results neal
z axis, while the standard method gives better results near the right boundary. We 1
that the artificially curved cells near the right boundary lead to some overcompression.
consider these results to be very satisfactory. On the other hand, it is also clear tha
practical applications we will need some modification of our grid reconstruction algorithi
to include limiters that control how big the change in angle can be for any side of the ce

9. CONCLUSION

It is clear that there are still many issues that need to be addressed. For example,
important issue will be to improve the robustness of the grid reconstruction algorithms
is possible to reconstruct the grid to ensure that the tangent vector to the grid lines wil
continuous at the grid points (which is not the case for the grid reconstruction proced
described in this paper). There are many ways to do this. Also, one can use a linear blen
of the local circles, or use cubic Hermite interpolation. The main issue here is to deternr
which approach is more accurate and robust. A related idea is to introduce limiters f
control the variability of the tangent of the reconstructed curve, leading to a smoother g

An alternate approach is to develop an equation for the evolution of the curvature
each segment, as opposed to reconstructing the grid at each time step. This approach
be especially useful in simulating the evolution of unstable interfaces, where the m
ultimately will not be sufficient to resolve the developing small features, but where
appropriate equation can predict these small features by evolving the curvature.

Another important question is how the curvilinear grid affects the accuracy of the si
ulation. We will investigate this question in the context of elliptic equations, where age
we can use the discrete operators constructed in this paper.

In summary, we have demonstrated the feasibility of preserving certain physical sy
metries in numerical simulations of fluid flow by using higher-order reconstructions
the computational grid. In particular, we used arcs of the circles to connect the nodes
showed that planar, cylindrical, and spherical symmetries could be maintained exa
While demonstrating feasibility, we recognize that our particular algorithm is construct
heuristically, and that continued research may lead to further significant improveme
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Nevertheless, we believe that the utility of our more general grid reconstruction is in it
worth illustrating.

APPENDIX A: LENGTHS, AREAS, AND VOLUMES

We start with the 2-D figures. Because the curve that connects two nodes is an arc
local circle, its length is

L = R, (A1)

whereR is the radius of the local circle andlis the central angle.

To compute the area of a quadrilateral with curved sides, we first compute the area c
associated quadrilateral with straight sides (obtained by connecting the nodes by str
lines), and then adding or subtracting the partial areas (segments) enclosed by an at
the chord formed by the straight line, see Fig. 13. For the area of each segment of the c
we use the well-known formula

2

R .
Ss<—:‘gmentof circle= 23 * ((lo] — sin(|wl)). (A.2)

It is easy to decide whether to add or subtract the area of the segment based on th
of w.

Next we consider the 3-D figures of revolution. To compute the areas of the faces o
figures of rotation, we use the formula

S=rcR(a1 — ap) + R2(sin(er1) — Sin(x)), (A.3)

wherer . is the radial coordinate of the center of the local cirtas the radius of the local
circle, andxg, «; are the polar angles corresponding to the endpoints of the arc of the cir
This formula can be easily obtained from the fact that the elementary area is

dS= (R du)(rc + Rcoqw)), (A.4)

recognizing thaR is constant on the surface.

(Lj+1)

(i+1,j+1)

(l’j) ........................................................................................................ ." . .
(i+1j)

FIG. 13. lllustration of procedure for computation of the area of a curved quadrilateral.
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To compute the volume of the figure of revolution, we use a similar logic as that us
to compute the areas of the 2-D figures with curved boundaries. First, we calculate
volume of the figure of revolution of the quadrilateral with straight sides and then v
add or subtract the volumes of figure of revolution of the segments of the circles.
compute the volume of the quadrilateral with straight sides we subdivide the quadrilate
into two triangles and then compute the individual volumes of these triangles. The volu
of the figure of revolution of a triangle is the product of its area withrtheoordinate of
the center of mass. For a trianglg is just one third of the sum of the coordinates
of the three vertices of the triangle. The volume of the figure of revolution of the segm
of a circle equals

2 3

R . R . .
V = ?rc[(al — ag) — sin(ay — ao)] + E[Z(Sm(al) — sin(ag))

— (coga1) + cogap)) sin(ay — )]

This formulais obtained as the difference of the volumes of the figures obtained by rotatiol
the sector of the circle and the triangle formed by the rays of the circle and the correspont
chord, see Fig. 14. The volume of revolution of the triangy® P is

RZ R3 .
Viriangle = ?rc sin(ay — o) + E(COS(al) + CoSap)) Sin(a1 — ap). (A.5)

The volume of the elementary sector centered at amgled subtending the angtie is

2

2 R
d Vsector = (rc + 3 RCOiot)) — da, (A.6)

2

Ju

r

FIG. 14. lllustration for derivation of the formula for the volume of a figure of revolution.
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and integration ovex gives

R? R® ,
Vsector = ?rc(al —aop) + ?[Sm(al) — sin(ao)], (A7)
and finally,
V = Vsector— Vtriangle- (A.8)

APPENDIX B: EDGE ARTIFICIAL VISCOSITY

It is necessary to introduce artificial viscosity to simulate high-speed flows with shoc
The purpose of the artificial viscosity is to spread shocks and other steep wave fronts
several grid points. In this section, we describe the modifications to the edge viscc
introduced in [5] necessitated by the new curvilinear grid. We do not give any motivat
or derivation for this form of the viscosity, but simply present the computational formule

In Fig. 15 we illustrate the additional geometrical elements needed to describe the vis
forces. The atrtificial viscous forces are associated with the subtriangles that are shou
Fig. 15. In each cell we define four forces related to the four subtriangles. For example
force related to cell + 1/2, j + 1/2 and to the triangle that includes the edgel/2, j is

Zi41/2,j+1/2 i+1/2,j+1/2 i+1/2,j+1/2
fii12] =0Giy12; Q=Y ) H)s]
NS = i+1/2, ] 412\ A
x 8[(AUit1/2]. ns:uzﬁ AU 172 (B.1)

Here the superscripts denote the cell, and the subscripts identify the side of the cell, v
uniquely determines the triangle. Als, 17>/ **/?is the scalar part of the viscosity 12 |
is a limiter, ands is a switch used to turn the viscosity on or off. The veatdl y/5 1"/
is the unit normal to the circle at the poing- 1/2, j. S&//1/2') /% is the area of the arc

(ij+1)

b

e
172,17,
BTN
12 N

FIG. 15. Geometrical elements involved in the description of the viscous forces.
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connecting points + 1/2, j, andi +1/2, j + 1/2, andAUiH/z,j is the unit vector in the
direction ofU;;1,2j — U; j, that is,

AUjy12

Alji+1/z,j = Ui+1,j _Gi,i’ Alji+1/2,i =—
[AUiL1/25]

(B.2)

The scalar part of the viscosity, in the case of an ideal gas with gas constans given
by

i+1/2,j+1/2
i+1/2,]
2
y+1 - y+1 -
= pi+1/2,j+1/2{T|AUi+1/2,jI + \/(T (AUis12))%+ C2a2 412 ¢

(B.3)

whereCi 12 j+1/2 iS the speed of sound in the cell. The limiigris defined as

. 12,j T lit12
Yiijaj = max{O, mm[% 2 1oy A1 o (BA)
where

AUi_1p2j - AUjq12§ /1AUj 12 ]
A)_ii_l/g,j . A)_{i+l/2,j [AXiy1/2,i]

liy12,j =

AUjyzp2 - AUiqz) /1AUi 12
A;(Hg/z,j . A)_{i+l/2.j |Axi+l/2,j|

r
lit12) =

In the last two equations\X is defined similarly toaU, (B.2), whereX is the coordinate
vector. The switch function is defined as

S, ifs<O
sl = {O, if s> 0. (8.5)

The forces acting on the other triangles in a cell are defined in an analogous manner, me
necessary changes to the indices.

The discrete momentum equation, including all the viscous forces that surround the ne
can be written as

Jn+1 qn

At
Si41/2 0412 P12 412 Si—1/2412  si—1/2,j4+1/2
= —(GRAD p); j + { fiii2] + i R+ fisig

F20V2 | AV20-V2 | EV2I-12 | F20-12
+fi_12 fi 212 fiic12 fivia; /M-

Pi,j
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Applying the principle of compatibility [6] the corresponding energy equation is
€ini11/2,j+1/2 - Ein+1/2,j+1/2
At
lj n+1 4 lj n )
2 i+1/2,j+1/2

Si41/2,j41/2  , qntl/2 Si11/2,j11/2  , qntl/2
+(fiidy2 75 AU ) + (2™ AU Dae)

Pi+1/2,j+1/2

n {(Fi+1/2,j+1/2’ A2 )

= —Pit12j+1/2 <D|V i+1/2 i+1/2,]

Si11/2,j412 12
+ (fi20 5 AU 2 1) F/ 241 (B.6)

The superscript + 1/2 indicates that this term is computed using the arithmetic mean
the old and new velocities.
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